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Few engineering tools are suitable for predicting supersonic jet noise, and the development of engine 

exhaust noise reduction technology for tactical aircraft continues to rely heavily on laboratory scale 

parametric testing. Aside from intuition and experience with the generally subtle issues involved in 

low-noise design, there is currently no way to rapidly and cheaply assess whether proposed designs 

will be effective, and no way to determine whether such designs are optimal. Arguably, this gap in jet 

noise modeling capability is an impediment toward achieving significant noise reduction for tactical 

aircraft.  The objective of the on-going research program presented in this paper is to develop and 

demonstrate innovative, highly-efficient computational methodologies for simultaneous nozzle 

acoustic and aerodynamic design applicable to subsonic and supersonic jet exhaust noise reduction in 

tactical aircraft. The approach comprises of three major elements: (1) Reynolds-averaged Navier-

Stokes (RANS)-CFD for computing the jet turbulent mean flow, (2) pressure wave packet-based 

methods for predicting near-field sound generation from the largest scales, based on the Linear 

Parabolized Stability Equations (LPSE) and the aforementioned RANS solutions, and (3) a method 

based on the solution of the linear wave equation for determining the acoustic radiation field from 

the LPSE solution. While these three procedures have received significant attention in the literature, 

their integration into a single tool for far-field noise prediction has not. To assess the accuracy and 

robustness of the simulation tool, experimental data has been acquired with near field array directed 

at detecting changes in the organized turbulence scale structure to link cause (nozzle geometry) and 

effect (near field and far field noise changes). Both ideally- and non-ideally expanded conditions are 

being investigated. Forward flight effects have also been measured using an open jet acoustic wind 

tunnel (at United Technologies Research Center) to evaluate the noise dependence on different 

operating conditions. The development and preliminary validation of the integrated tool is presented 

in this paper, with a focus on individual components and their translation into a common format for 

integration. 

Nomenclature 

3D =  three-dimensional LES =  large-eddy simulation 

F =  computational flux m =  mode number 

G =  Green‟s function M =  Mach number 

J = Jacobian of transformation P, p =  pressure, power spectral density (P) 

k =  kinetic energy of turbulence Q =  solution vector 

R = correlation function RANS = Reynolds-averaged Navier-Stokes  
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SA = Spalart-Allmaras St =  Strouhal number 

t =  time Λ = eigenvalue 

T = temperature γ =  ratio of specific heats 

TVD =  total-variation diminishing    

U =  velocity   

U  = mean velocity   

u = velocity Subscripts  

VLES = very large-eddy simulation   

w = WENO weight i =  nodal point in finite difference 

WENO = weighted essentially non-oscillatory L = left 

φ =  generic variable R = right 

x =  axial direction M = mode 

α =  spectral radius jet =  related to jet exit conditions 

δ =  Kronica delta ∞ =  free stream 

ε =  kinetic energy dissipation rate ‘ = fluctuating 

θ = azimuthal angle   

I. Introduction 

There are few engineering tools suitable to predict supersonic jet noise, and the development of engine 

exhaust noise reduction technology for tactical aircraft continues to rely heavily on laboratory-scale testing. 

In this absence of modeling and analysis capability, concept identification relies largely on engineering 

intuition, ad hoc reasoning, and exhaustive parametric testing. Aside from intuition and experience with the 

generally subtle issues involved in low-noise design, there is currently no way to rapidly and cheaply assess 

whether proposed designs will be effective, and no way to determine whether such designs are optimal. 

Arguably, this gap in jet noise modeling capability is an impediment toward achieving significant noise 
reduction for tactical aircraft.  

 

A further impediment to exhaust noise technology development is the absence of integrated tools for 

simultaneous assessment of aero-acoustic and aerodynamic performance. As a result, non-acoustic design 

objectives tend to be considered later in the noise concept design process, with laboratory-scale tests 

proceeding without assessing the impact on nozzle thrust, aircraft stability, IR signature, and other system 

level parameters. This can lead to designs with unnecessarily compromised aerodynamic performance, and 

to “point designs,” which neglect the overall mission envelope.  

 

The absence of a comprehensive, integrated aerodynamic/aero-acoustic modeling and analysis framework 

represents an impediment toward achieving significant noise reduction within constraints imposed by the 
engine cycle, geometry, and airframe integration requirements. These gaps represent a significant 

opportunity to improve engineering effectiveness in the context of noise technology development for 

tactical aircraft. The proposed research addresses this opportunity as described below.  

The overall objective of the research program summarized in this paper is to develop and demonstrate 

innovative methodologies for simultaneous nozzle acoustic and aerodynamic design applicable to 

supersonic jet exhaust noise reduction in tactical aircraft. However, only the acoustic component of the 

program is presented in this paper. Methodologies are being demonstrated via concept design/analysis (e.g., 

a chevron nozzle or non-circular geometry) followed by experimental validation at model scale. The 

computational efficiency and turn-around time associated with the proposed predictive tool being 

developed are also being addressed in order to produce robust and efficient numerical procedures that will 

be integrated into a design procedure and applied to nozzle geometries being developed in on-going 

programs on noise reduction.   

 

The proposed effort leverages existing software tools at TTC Technologies, Inc. (TTC), as well as novel jet 

noise modeling and experimental diagnostic capability currently being developed under a NAVAIR-funded 

effort involving TTC, United Technologies Research Center (UTRC) and California Institute of 

Technology (Caltech). In specifics, the technical approach proposed here combines: (1) existing TTC 
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capability in the area of RANS/LES-CFD tools (AEROFLO software package) and fine-scale turbulence 

noise modeling, (2) new reduced-order unsteady modeling methods for large-scale turbulence noise under 

development at Caltech, and (3) experimental facilities and novel experimental diagnostic techniques 

available at UTRC. This combined effort is directed towards the design and performance analysis of nozzle 

components at the application phase beyond the current contract.   

 
Embedded in the modeling and simulation tools is the innovative approach of designing nozzles to mitigate 

the large-scale structure noise which dominates the peak engine noise in the aft direction. The approach is 

grounded in modification of the initial flow conditions at the nozzle exit to generate/control flow 

instabilities, which change the evolving downstream shear layer responsible for noise generation.   

Identification of nozzle exit plane initial conditions with sufficient control authority to achieve downstream 

noise reduction while maintaining nozzle performance represents the key opportunity of the program.  

Currently, RANS-based computations of mean flow and turbulent kinetic energy reductions are used as a 

surrogate analysis procedure to determine the potential noise reduction in the absence of direct prediction 

methods. The proposed tool package will add acoustic analyses for the engine exhaust radiation field to 

allow analysis of novel nozzle configurations.  

  

The feasibility of the proposed methodologies has been successfully demonstrated in earlier studies by the 
authors, which are summarized in this paper. Of primary interest is the accuracy of the simulations 

compared to experimental data, as well as the practicality of simulations in terms of turn-around time.  

 

The current effort in this program focuses on the development of robust design procedures employing our 

earlier methodologies. Toward this objective, diagnostic experiments are employed to identify modeling 

deficiencies and guide model improvements. As improvements are made, the methodologies and design 

procedures will be employed/validated in ongoing DoD nozzle development programs.    

II. The Computational Methodology 

 

The modeling and analysis approach is comprised of three major elements: (1) Reynolds-averaged Navier-

Stokes (RANS)-CFD for computing the jet turbulent mean flow and nozzle aerodynamic performance, (2) 

pressure wave packet-based methods for predicting near-field sound generation from the largest scales, 

based on the Parabolized Stability Equations (PSE) and the aforementioned RANS solutions, and (3) a 

method based on the solution of the linear wave equation for determining the acoustic radiation field from 
the PSE solution. The proposed methodology has been demonstrated in prior work by the authors, leading 

to a generation 1 version (GEN1) of the prediction software tool, utilizing a linear form of the PSE 

methodology (LPSE). The three main elements comprising the integrated approach (Figure 1) are described 

below. 
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Figure 1 The nozzle acoustic/aerodynamic design procedures and team members’ responsibility 

III. The RANS/LES Component of the Integrated Tool 

 

Although TTC owns a substantially enhanced version of the finite-volume based VULCAN RANS/LES 
code, we have decided to use AEROFLO, also developed by TTC, as the vehicle for the implementation of 

the integrated tool. AEROFLO is based on high-order curvilinear, finite difference schemes, with advanced 

overset capability. The RANS models available in AEROFLO for generating the base flow for the PSE 

method include Spalart-Allmaras (SA), detached eddy simulation (DES), various versions of the k-ε, k-ω, 

and k-τ models, as well as the partially-resolved numerical simulation (PRNS) models that are currently 

being developed at NASA Glenn and TTC. The various turbulence formulas inherit the high-order accuracy 

of the schemes that are used for the base Navier-Stokes equations, which comprise of the compact schemes 

(subsonic flows) and various versions of the weighted essentially-non-oscillatory (WENO) schemes 

(transonic and supersonic flows). (Low-order spatial discretization with the MUSCL schemes is also 

supported in the tool.) The large-eddy simulation (LES) procedures in AEROFLO include the standard 

Smagorinsky and dynamic Smagorinsky models, Vreman‟s version of the Smagorinsky model, and the 

recent approach by Menon, which involves the solution of an evolution equation for the sub-grid scale 
turbulence kinetic energy. The high-order capability in AEROFLO is also very advanced, to the point that 

it was successfully used to calculate flow over complete Boeing 747-200 aircraft five years ago (Ladeinde 

et al., 2006), making it the first application of a high-order code to calculate a realistic complex geometry. 

A. The Spatial Schemes in AEROFLO 

 
The spatial schemes in the high-order procedures presented are based on the finite difference method, 

because of the low cost relative to other options, such as finite volume and finite elements. Shu (1997) has 

reported that a high-order 3D finite volume method is approximately nine times as expensive as the finite 

difference method. The finite element method could even be more expensive because of the numerical 

quadrature that is required for high-order schemes. We use the MUSCL schemes for low-order calculations 

and the compact and WENO schemes for high-order discretization. The compact scheme is intended for 

incompressible and subsonic flows, whereas WENO is used for transonic and supersonic flows. The basic 
forms of the schemes in AEROFLO are summarized below. 
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1. MUSCL 

 

This simple, fairly robust, low-order scheme that uses Roe flux-splitting at the mid-point values was 

introduced by van Leer. First, the left and right values of the primitive variables at mid-point between two 

nodes are computed as 
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where  = (,u,v,w,p)T is the vector of primitive variables and i is the “limited slope” at point i. Here, p is 

the thermodynamic pressure. The limited slopes i are computed using van Leer‟s harmonic limiter. 
 

Based on the left and right states at i+1/2, the numerical flux is computed using Roe flux-splitting as 
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Here, the “R” and “L” values are constructed using the corresponding values of the primitive variables. 

Matrix A  is constructed using the Roe-averaged state at i+1/2: 

1 RoeRoeRoe RRA , 

where   is the diagonal matrix of the absolute eigenvalues of the Jacobian, 
Q

F


 ˆ . 

2. Compact 

 

The Padé method is used to approximate the spatial derivatives for subsonic flows. Consider the 

differencing of a variable  (e.g., a conserved variable, a flux component, etc.) along the ξ-direction, or 

  /' . An implicit, centered finite difference formula is employed to calculate the numerical values 
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The parameters , a, and b determine the spatial accuracy of the algorithm. Their values are determined 

from a Taylor series expansion around point “i.” For a sixth-order accurate scheme,    
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Compact finite differences are non-dissipative and are therefore susceptible to the numerical instabilities 

that are due to flow nonlinearities. In order to enforce numerical stability, a low-pass filtering procedure is 

adopted. For a typical component of the solution vector, , the filtered values 
~

are obtained from 

 


 
N

k

kiki
k

ifiif

a

0

11
2

~~~
 . 

The coefficients ak are expressed in terms of the parameter f, which controls the strength of the filter, and, 

as it is reduced, a wider band of high frequencies is damped. A range 5.03.0  f is suggested.  

 

3. WENO 

 

For high-order differencing of flow fields with shock waves, the characteristic-wise WENO procedure is 
used (see Shu (1997), procedure 2.10). This numerical approach is summarized below. 

 

Considering the  -direction as an example, we have  
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 is the matrix formed with the right eigenvectors of the Jacobian 
Q
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 ˆ computed based on a 

Roe-averaged state at i±1/2.  For the characteristic-wise WENO, the reconstruction procedure is performed 
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on the characteristic fields FRF
Roec

ˆ~ˆ 1    to obtain the values at i+1/2. The Lax-Friedrichs flux-splitting 

method is used to obtain the left and right states at the mid-points:  

 qFF cc  ˆ
2

1ˆ , 

where  is the spectral radius of the Jacobian 
Q

F


 ˆ . The characteristic-wise fluxes at the mid-points are 

reconstructed as 
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where r  and r~  are normalized weights, based on smoothness indicators of the numerical fluxes, and 

rmc  are the coefficients for the Lagrange interpolation. Finally, the reconstructed characteristic fluxes are 

converted back to physical space, 
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The viscous fluxes are discretized with explicit second-order finite differences when the MUSCL scheme is 

used for the convective fluxes, and with high-order finite differences, when the compact (sixth-order) or 

WENO (fifth-order) schemes are used for the convective fluxes. 

 

4. Newer WENO Schemes in AEROFLO 

 

Newer versions of the WENO schemes have recently been implemented in AEROFLO to allow for a more 

consistent superior performance for a wide range of problems. This includes the WENO-M and the 

WENO-Z schemes. 

 

The WENO-M Smoothener 
This procedure modifies the weights to mitigate the quick degeneration of the WENO scheme to lower 

order accuracy in the vicinity of (even) the weakest discontinuities. This is because the weights used by 

Jiang and Shu (1998) (hereafter referred to as JS) are very sensitive and quickly nullify the contribution of 

a “heavy” stencil, hence reducing the scheme to just two stencils with an approximate third-order 

performance. The modified weights can be written as  
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where the optimal weights γ0, γ1, and γ2 are given as 0.1, 0.6, and 0.3, respectively, ε is a small, non-zero 

number introduced in order avoid division by zero when the smoothness indicators have zero values. The 

parameter p is usually taken as 2, following the procedure of JS. The weights are modified using 

smoothness indicators βk, such that the contributions from stencils with large variations are minimized, 

while those from stencils in smooth regions are made to approach the optimal values. Finally, the modified 

weights are renormalized: 
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In WENO-M, these weights are further modified or remapped as follows (Henrick et al., 2005): 
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The recomputed weights are then normalized again to obtain remapped weights: 
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which are then used in the computation of the fluxes. An additional modification applied to reduce the 

sensitivity of the smoothener was to set p = 1. 

 

C.2. The WENO-Z Smoothener 

This procedure also modifies the weights, but in a much simplified manner that leads to much fewer 

arithmetic operations. Thus, WENO-Z is significantly faster than WENO-M, with a comparable level of 

accuracy. The modification to the smoothener, and therefore weights, is as follows (Jacobs et al., 2008; 

Borges et al., 2008): 
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B. Time Integration 

 

Several time-marching schemes are supported in AEROFLO. For problems where accurate time-dependent 

solutions are required, the classical fourth-order Runge-Kutta (RK4) scheme is employed in its low-storage 

form. Because of its relatively severe stability constraint, RK4 is inappropriate for flow problems in which 

only the steady state solutions are sought. The approximate factorization procedure of Beam and Warming, 

with the diagonalized simplification by Pulliam and Chaussee (1981), is employed for these cases: 
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where 2/1  yields a three-point backward stencil in time. Here, derivatives i are obtained with standard 

second-order centered differences in the implicit operators on the left-hand side, while the right-hand side 

differences are computed using the high- and low-order spatial schemes described above. In order to reduce 

the errors associated with the approximate factorization and diagonalization procedures, Newton-like sub-

iterations are performed. Note that in the equation above, the superscript “n” denotes the iteration number, 

and superscript “p”, the sub-iteration count. Within one iteration, )()( np QQ  and, at convergence in p, 

)()1( pn QQ  . Typically three sub-iterations are applied per time step. Our code also supports a third-order 

total-variation-diminishing (TVD) Runge-Kutta time integration procedure.  
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C. The Accuracy of AEROFLO 

 

We employed the Method of Manufactured Solutions (MMS) to demonstrate the high-order accuracy of 

AEROFLO and compare the accuracy to the theoretical values. The results in Figure 2 were an outcome of 

the investigation, wherein the accuracy observed for a manufactured problem using the MUSCL (low-

order), compact (high-order, subsonic), and WENO (high-order, supersonic/hypersonic) are shown. Note 
that the observed accuracy depends on the boundary conditions, as illustrated in the figure for compact 

schemes ((C4C6) shows lower accuracy compared to (C5C6)), and that the use of component-wise or 

characteristic-wise procedures in WENO did not significantly alter the accuracy. 
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Figure 2 Validation of the high-order accuracy of AEROFLO for subsonic flow (compact, top row) and 

supersonic flow (WENO, bottom row) using the Method of Manufactured Solutions (MMS). MUSCL is 

applicable at all speeds. The theoretical accuracy is second-order (MUSCL), sixth-order (compact), and fifth-

order (WENO). 

 
D. Validation of AEROFLO for Jet Noise Simulation 

 

Numerous studies have been carried out at TTC to validate the accuracy of AEROFLO for jet noise 

prediction. The studies started with the investigation of the performance of the large-eddy simulation 

module, with a focus on the large-scale structures, which are known to generate most of the aft noise. Since 

the phenomenon resides in the large scales, it appears that a relatively coarse-grid LES should be 

appropriate. We set out to investigate this hypothesis under a task we termed “very large-scale eddy 

simulation,” or VLES, for short. We also carried out simulations based on RANS and hybrid RANS/LES. 
A typical grid topology used in our studies is shown in Figure 3, with Figure 3(b) showing a close-up view 

of the nozzle exit region. As shown in the figure caption, the number of grid points is usually less than two 

million for either the RANS or RANS/LES. It is important to stress that the LES procedures in AEROFLO 



 9 

are based on the most advanced procedures in the open literature, even if we choose to use coarse grid 

models within our VLES framework. 

 

                      
a) Sample grid topology used for RANS/LES simulations, b) close-up of the nozzle exit region 

 

Figure 3 Computational overset grids in our VLES and RANS studies of jet noise prediction, showing a) a 

sample block topology and b) a close-up on the nozzle exit region. In all studies, RANS is used to calculate the 

flow inside the nozzle, whereas either VLES or RANS is used in the plume region. A typical VLES grid has 

1,731,564 points (including the nozzle interior flow), whereas the grids for the RANS calculations are usually 

around 1,323,518 points. 

 

 
Figure 4 Grid distribution in the vicinity of the nozzle exit 

 

Figure 4 is a two-dimensional slice that shows the grid details in the vicinity of the nozzle exit, while 

Figure 5 shows two mesh systems in the vicinity of the centerline. Although both are overset, Figure 5(a) 

shows a more powerful (overset) gridding system involving overlapping and non-conforming grid topology 

at the center region. 



 10 

 
a)        b) 

Figure 5 Two overset mesh systems to handle centerline 

 singularity; a) overlapping, non-conforming, b) non-overlapping, conforming system 

 
Simulations using LES have been carried out for many cases for which experimental data were available in 

the literature, such as Tanna‟s round jet Set Point 46 (SP46) (hot) and Tanna‟s round jet Set Point 7 (SP7) 

(cold). In many other cases, the experimental data were generated within the team, via the facilities at 

UTRC. Figure 6 shows a VLES/RANS simulation of SP7. The general large-scale features of the appear to 

have been captured. 

 

 
 

Figure 6 VLES Simulation of Tanna’s round jet Set Point 7 (SP7), showing the axial development and 

transverse cuts. Note that in all our studies, RANS is used to calculate the flow inside the nozzle. 
 

The same problems were also calculated using RANS in the plume region (i.e., RANS/RANS), with a 

comparison of the results with Bodony and Lele (2006) and Tanna‟s experimental data (Figure 7). These 

results show a superior performance of RANS/RANS (over RANS/VLES) for the prediction of the 

normalized axial jet velocity. The radial distribution of the axial velocity component and the rms of the 

axial fluctuating velocity component (Figure 7(c)) show excellent agreement with the experimental data for 

both variables. Note that the Witze correlation has been used to scale the axial distance by the potential 
core length. Two-point correlation blind tests of AEROFLO predictions against experimental data 

measured at UTRC, are shown in Figure 8, while Figure 9 shows the power spectral density (PSD).  
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a)                       b) 

 

                                             
 

Figure 7 VLES/RANS and RANS/RANS simulation of 

Tanna’s round jet (SP46 and SP7), showing comparison 

with Bodony and Lele (2006) and Tanna’s experimental 

data. (a): hot jet, (b): hot and cold jet, (c): cold jet. Figure 

7(c) is adjusted for the potential core length. Figure 7(a) 

shows that our RANS/RANS is more accurate than our 

VLES and the VLES by Bodony and Lele (2006). 
 

 

 

   

   

 c) 

                   
Figure 8 Real part of the two-point correlation function Rm as function of x1 and x2 for Tanna SP7. 

VLES (top) compared to experiment (bottom); m=0; St = .16, .31, .39.  The raw data are from Colonius 

and Suzuki (2006). AEROFLO RANS/VLES results for other modes, m=1, m=2 (not shown) are 

equally promising, even for the level of refinement. All tests were blind, meaning that TTC did not 
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know the results and AEROFLOoutput  data were post-processed at UTRC where the experimental 

data were collected. 

 
 
Figure 9 Comparison of measured and simulated pressure spectra along hydrodynamic array for  Tanna Sp 7; 

m=1; ΔSt = .0196.  The raw data are from Colonius and Suzuki. LES results have been shifted by –5 dB. All tests 

were blind, meaning that TTC did not know the results and AEROFLO data were post-processed at UTRC 

where the experimental data were collected. 
 

The remaining discussions on AEROFLO validation below focus on RANS/RANS (i.e., RANS inside the 

nozzle and RANS in the plume). The purpose of Figure 10 is to show the relative performance of RANS 

modeling using Spalart-Allmaras (SA) and the k- ε models, using SP7 and Set Point 3 (SP3) for the tests. 

SA is of interest because it is cheaper to calculate and thus would be preferred if the procedure leads to an 

accurate prediction. Unfortunately, the poor performance of SA is evident in Figure 10. Thus, although the 

RANS mean flow calculations for PSE were initially carried out with SA, we switched to k-ε after realizing 

the poor performance of the former approach. 

 
Figure 10 Comparison of Spalart-Allmaras and k-ε models 

x/D

U
c
/U

j

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Exp_sp3 (round)

S-A model

k- model



 13 

 for SP7 and SP3.  The poor performance of SA is evident. 

 

Figure 11 compares AEROFLO RANS predictions of chevron nozzle (SMC001) flow with experimental 

data using the SP7 conditions. Although this comparison is qualitative, the performance of AEROFLO 

appears excellent. 

 

 
Figure 11 Comparison of AEROFLO predictions with  

PIV data for subsonic Chevron nozzles, using the SP7 data 

 

We will conclude the discussions on AEROFLO validation for the integrated tool by considering 

supersonic, perfectly expanded, Mach 1.5 nozzles. For this purpose, we consider the conditions for B118, 

B120, and B122 (Table 1). Note that B118 involves a round nozzle, with cold jet, whereas B120 involves a 

round nozzle, with a hot jet. B122 has a chevron nozzle and the jet is hot. These three configurations have 

been analyzed using each of the three components of the integrated reduced-order tool (RANS, PSE, and 

wave-packet). For the RANS part, only B118 and B122 will be discussed in this paper. 

 
Table 1 Perfectly-expanded supersonic test cases 

 
In an exploratory RANS calculation of B118, the interest arose to do calculations without including the 

nozzle, and compare the results with cases where the nozzle is included. We wanted to determine the cause 

of the abrupt drop in the mean axial velocity profile at the end of the potential core that was observed for 

cases where the nozzle is excluded from the model. For this case, imposing a turbulence field at the nozzle 

exit did not solve the problem with the abrupt decay; neither did judicious mesh refinement. The turbulence 
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decayed very quickly as the flow moves away from the exit. It was interesting to observe that the inclusion 

of the nozzle geometry as part of the model removed the abrupt decay. Figure 12(a) shows the RANS 

results for B118, with and without the nozzle in the model. The most prominent difference is the abrupt 

decay alluded to above. Note that the number of grid points for the simulations are 1,025,340 (with and 

without nozzle), 650,000 (without nozzle). For B122, only one chevron is modeled, with a grid of 804,555 

points. 
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     a)      b) 
Figure 12 Evaluation AEROFLO RANS for B118 and B122: (a) B118 results, with and without the nozzle in the 

model., (b): B118 and B122, both with nozzle included.  

 

 
Figure 13 Details of B118 flow at selected axial locations, with and without 
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the nozzle. Contour maps of the axial velocity are shown. 

 
Figure 14 Details of B118 flow at selected axial locations, with and without 

the nozzle. Contour maps of the eddy viscosity distribution are shown. 

 
The details of the flow in B118 are shown in Figures 13 (axial velocity) and 14 (eddy viscosity). The 

results show that the presence of a nozzle appears to introduce a slight asymmetry in the flow. Note that 

periodic conditions are imposed in the azimuthal direction. Figure 15 below shows snapshots of the flow in 

the chevron of case B122 at selected axial locations. The profiles appear to be very reasonable, and are not 

significantly dissipated. 
 

E. Aero performance validation of AEROFLO 

 

To demonstrate the feasibility of the RANS capability in AEROFLO for complex nozzle aerodynamic 

performance analysis, mutually agreed to government test cases were to be used.  However, non-

proprietary data was not available so the team was tasked with identifying a viable data set.  In keeping 

with the demonstration of the TTC RANS tool on complex chevron nozzle geometries, UTRC conducted a 

search for a mutually agreeable chevron data set. Figure 16 shows a baseline and 12 chevron model scale 

nozzle for which the discharge coefficient (Cd) and thrust coefficient (Ctr) were documented in an 

unpublished report. Model assembly with chevron nozzle is shown in Figure 17. The geometry was 

forwarded to TTC while the experimental results were held by UTRC to provide a blind test of the 
performance prediction accuracy.  To retain the blind test case status for future evaluations in other studies, 

the measured Cd and Ctr values are not reported here.  Rather, the deltas between predicted and measured 
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results are reported. Details of the geometry and test results were, however, shared with the contract 

monitor to obtain government concurrence.  

 
 

Figure 15 Axial velocity maps at selected axial locations (B122) 

 

Internal details of the model assembly and nozzle are shown in engineering drawing of Figure 17 

illustrating the complexity of the geometry which was gridded for the CFD prediction.  The 12 chevrons 
were deflected inward in this converging nozzle design.  The secondary nozzle cooling duct shown in the 

drawing was not included in the performance testing of the nozzle.  The overall baseline and chevron 

nozzle pressure ratios (λ) were 2.0025, which is slightly larger than the critical pressure 

ratio   89293.12/)1(
)1/(



 . Therefore, the nozzle flow was slightly under-expanded. Both the 

Spalart-Allmaras and k-ε turbulence models were evaluated, although results reported here are confined to 

the latter, as this model was determined to provide more accurate predictions.  The calculated discharge 

coefficient  (Cd)  and  thrust  coefficient  (Ctr)  are  presented  in  Table 2 as  deltas  relative  to  the   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 16  Baseline round nozzle and chevron nozzle with short internal plug (not visible). 
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Figure 17 Model assembly with chevron nozzle 

 

experimentally determined values for the chevron nozzle in Figure 16. The results show a 1.5% under-

prediction of  Cd  and a 1% over-prediction of Ctr. 

 

 Delta relative to measured 
discharge coefficient (Cd)  

Delta relative to measured 
thrust coefficient (Ctr) 

k-ε model +0.0155 -0.0107 

 

Table 2 Aero performance evaluation of AEROFLO/RANS 

 

Fractional error relative to experimental data are shown in Table 2. It is noted that the reference scales for 

the RANS calculation is selected as the nozzle exit flow values under perfectly-expanded conditions: 

Uref=326 (m/s), ρref=1.468 (kg/m3), pref=1/γMj
2.  

IV. The PSE Component of the Integrated Tool 

 
The PSE method relies on predicting, as a function of frequency, the 

convecting pressure wave packet that is observed to exist in a region 

adjacent to the fully turbulent shear layers.  This region is defined as 

sufficiently far from the shear layers so that mean shear is negligible 

and disturbance levels are 

sufficiently low that linearized 

equations suffice to describe the 

flow, but sufficiently close such 

that, for subsonically convecting 
disturbances, the pressure field is 

Figure 18  78 microphone near-field 

array, constructed and tested at 

NASA Glenn Research center by J. 

Bridges and S.-S. Lee.  See [5] for 

further details. 
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evanescent, or exponentially decaying, with a convective rather than acoustic phase speed.  Provided that 

pressure fluctuations from smaller-scale turbulence in the shear layer decay sufficiently fast, the existence 

of such an evanescent wave region is predicted from quasi-parallel stability theory of jet mean flow fields, 

and was recently confirmed in detail through the use of a caged 78 microphone array (Figure 18) for a 

variety of jet operating points and from both round and chevron nozzles (Suzuki & Colonius, 2006).  At 

supersonic convection velocities there is direct radiation from these wave packets in the form of Mach 
waves (Tam & Burton, 1984), but the overall structure of the wave packet is not qualitatively different from 

subsonic convection velocities.  

 

For many years, researchers have associated large-scale turbulent structures in free shear layers with 

instability waves of laminar and turbulent mean flow fields (see for example, Liu, 1974; Michalke & Fuchs, 

1975).  Such linear stability waves exhibit the structure of convecting wave packets just outside the shear 

layer.  However, prior attempts to model features of jet mixing and noise radiation from these models have 

for the most part failed, except when jets are strongly forced at frequencies for which these waves are 

strongly amplified by the flow.  Another exception is at supersonic jet speeds, where features of Mach 

wave radiation have successfully been predicted and measured based directly on a Matched Asymptotic 

Expansion between the quasi-parallel near-field instability wave and solutions of the wave equation in the 

far-field (Tam & Burton, 1984). A key difference between the current approach and previous work is that 
we avoid attempting to equate measured flow quantities inside the turbulent flow with instability waves.  

Any such identification is problematic, since inside the region of intense turbulence, a variety of scales of 

motion contribute to the local pressure or velocity. On the other hand, outside the shear layer where 

smaller-scale pressure fluctuations are absent, it appears that the observed pressure wave-packet structure 

can, at least before the end of the potential core, be directly associated with linear instability waves (of the 

turbulent mean flow field).   

 

The evidence for this was provided by Suzuki and Colonius (2006), where instability wave amplitudes 

were computed for the experimentally determined mean flow fields (from PIV measurements, see Bridges 

& Brown, 2004) and compared directly to pressure signals from the 78 microphone array. Ryu et al. (2008) 

have recently provided additional comparisons between linear stability theory and LES-determined wave 
packets.  

 

Originally developed by Herbert and Bertolotti (1997), the PSE method expands the domain of traditional 

linear stability methods by relaxing the parallel-flow assumption as well as allowing for the inclusion of 

non-linear terms.  PSE has been used with considerable success in the prediction of convectively unstable 

flows such as boundary layers (Bertolotti & Herbert, 1991), jet flows (Malik & Chang, 1997) and planar 

mixing layers with chemistry (Day, Mansour & Reynolds, 2001). The governing equations for the PSE 

component of the integrated analysis tool is contained in Appendix A of this paper.   

 

A. Mean Flow Fourier Modes from PIV and AEROFLO/RANS  

 

The mean flow Fourier modes obtained from PIV data for Chevron were compared with those from RANS 
calculations for the purpose of assessing the suitability of RANS in the RANS-PSE component of the 

integrated procedure.  Comparative evaluation of RANS models based on k  and Spalart-Allmaras was 

also carried out, in order to determine the specific RANS models to be used for the studies.  

 

The Chevron calculations pertain to Tanna‟s Set Point 1 (SP1), Set Point 3 (SP3) and Set Point 7 (SP7).  

The flow and simulation parameters are listed in Table 3. Eight blocks with a total of approximately half a 

million grid points were used to calculate half of a slice of Chevron, assuming symmetry of the flow. 

 

 

Case Mj Re NPR Tj/T∞ Y+ Ngrid 

SP1 0.35 3.93×105 1.0885 1.0 1.12 440772 

SP3 0.5134 6.3×105 1.197 0.95 1.67 440772 

SP7 0.9854 1.0×106 1.861 0.835 2.5 440772 

 

Table 3 Flow parameters and the numerical setups 



 19 

 
Fourier transform in the azimuthal direction was used to extract the modes in multiples of six for a nozzle 

with 6 chevrons, where the Fourier transform takes the form 

 

   dimrxUUm )exp(,,ˆ   . 

 

The extracted velocity profiles were used to solve the following compressible Rayleigh equation (CRE) for 

linear stability analysis:       
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With symmetry in the azimuthal direction, we can simplify Eq. (19) to 
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and Tj denotes the jth Fourier mode of quantity T.  

 

The Matlab-version of the PSE procedure was converted to FORTRAN and C/C++, which were the 

computer languages that are used for the integrated (RANS-PSE-Wave packet) code.  
 

Figures 19 summarizes the results of the analysis, wherein the Fourier modes obtained from PIV data are 

compared with those from RANS mean flows, using  the Spalart-Allmaras and k  model s for both 

round and Chevron nozzles (only SP7 results are shown). 

 

Consistent with observations made previously in this paper, the k-ε RANS model is less dissipative than the 

Spalart-Allmaras model, and gives more accurate results, using experimental data as the reference. The 

centerline velocity and the Fourier modes of velocity at several cross-sections are shown. The suitability of 

using k  RANS-generated results as the equilibrium solutions for the linear stability analysis was thus 

established. 

 

B. Validating the PSE Procedure (Experimental Mean Flow Data) 

 

Figure 20 below shows the pressure amplitude results obtained from the PSE procedure being used in 

comparison with experimental measurements for a subsonic round jet (Godmundsson and Colonius, 2007). 

However, the mean flow field used in analysis was measured experimentally using PIV as reported in 

Suzuki and Colonius (2006). The figure shows the wave packet pressure amplitude obtained for a Mach 0.9 

cold jet (corresponding to set-point 7 in the study by Tanna (1976)), for azimuthal wave numbers m = 0 and 

1, and Strouhal numbers 0.15, 0.30, and 0.45. This figure includes the results of linear stability analysis 
(LST). Note the significant improvement offered by LPSE over LST at St = 0.15, particularly for m = 0, 

clearly illustrating the importance of non-parallel effects. For higher frequencies, the differences between 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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Figure 19 A comparison of (mean velocity) Fourier mode in azimuthal direction between PIV (blue line) and 

Spalart-Allmaras RANS (red line) and k-ε (black line) for SP7 

 

LST and LPSE mostly disappear; at these frequencies, the disturbance wavelengths are such that non-

parallel effects, the only distinction between LPSE and LST, are of vanishing importance.  

 

C. Validating the PSE Procedure (RANS Mean Flow Data) 

 

In order to evaluate the predictive capability of PSE for a supersonic jet, we consider a Mach 1.5 perfectly 

expanded cold jet (set-point B118 in Tanna, Dean, and Burrin (1976)), which was measured in a rotating 
microphone array at the United Technologies Research Center. The mean flow field needed for the 

calculations was obtained from RANS. The results, shown in Figure 21, indicate that the predictions are 

similarly good as for the subsonic jets. The results are mixed; in some instances, the predictions are 

excellent (e.g., St=0.3, m=1), while others are not as close (e.g., St=0.3, m=0), with the trend being towards 

overshoot followed by rapid decay. 
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Figure 20 Comparison of microphone near-field array measurements from Suzuki & Colonius (2006) (symbols) 

with predictions of linear stability analysis from Suzuki & Colonius (2006) (red line) and present linear PSE 

(blue line) of a cold M=0.9 jet. 

V. The Wave-Packet Component of the Integrated Tool 

 

To calculate the jet acoustic field, our approach uses a transfer function relating the acoustic far-field to 

pressure space-time correlations in the jet hydrodynamic near-field. The “hydrodynamic” field refers to the 

region just outside the turbulent shear layer where the pressure field is dominated by the signatures of large 

scale turbulence, known to be the source of peak radiation in the aft quadrant. This approach has been 

validated by the authors by applying the transfer function to direct measurements of two-point pressure 

statistics in the hydrodynamic field, and demonstrating that the result matches direct measurements of the 

acoustic field. Additional details can be found in Reba et al. (2005).    

 

The acoustic transfer function is determined by using the Green‟s function G satisfying the reduced wave 

equation 

)'(22 xxGkG  
, 

where k is the acoustic wave number, x is the field point, and x‟ is the source point. We consider a tailored 

Green‟s function satisfying G=0 on a conical near-field surface. An analytical solution for G is obtained 

using a spherical-polar coordinate system (r) centered on the virtual origin of the near-field surface. 

Fourier-spectral representation is used in the azimuthal coordinate . The resulting equation is solved by 
first applying a spherical Hankel transform in the radial coordinate r, followed by an expansion in 

associated Legendre functions in the polar angle .  The acoustic pressure field pm at azimuthal mode m can 
then be expressed in the form 
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where P is the pressure on the near-field surface determined from PSE. The governing equations for 
the PSE component of the integrated analysis tool is contained in Appendix A of this abstract; the equations 

for the wave-packet method are contained in Appendix B. 

(24) 

(25) 
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Figure 21 Phased-array microphone measurements (symbols) compared with predictions of linear PSE (blue 

line) analysis of a cold, supersonic M=1.5 jet (B118).  These calculations are on-going and will be reported in the 
final paper. 

 

A. Validating the Wave-packet project method 

 

An analytical method for projecting near-field pressure waveforms to the acoustic far-field was codified by 

UTRC and delivered to CIT and TTC for implementation into the integrated tool. 
 

The acoustic projection methodology was developed and validated under a concurrent NAVAIR-funded 

effort. To validate the methodology, a novel rotating array was developed to measure the pressure 

signatures of large-scale structures in the near-field of a model scale Mj=1.5 jet operating over a range of 

temperature ratios. The rotating near-field array concept uses two linear arrays situated within 2 diameters 

of the jet centerline, and approximately following the downstream spread of the shear layer. One linear 

array can be rotated automatically in the azimuthal direction. The second array is fixed, and provides a 

reference signal for determining the azimuthal modal content of the near-field pressure. The near-field 

unsteady pressure data was projected to the acoustic field by solving the linear wave equation with pressure 

specified on the conical surface defined by the array. The resulting projected field was then compared to 

direct measurements of the jet acoustic far-field.   
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Comparisons of the measured and projected far-field are shown in Figure 22 for the test conditions listed in 

Table 1. The model scale jet was designed by the method of characteristics to provide ideal expansion or 

shock free flow at the nozzle exit. Overall agreement between measurement and projection is very good at 

the Strouhal spectral peak, St=0.4, which dominates supersonic jet noise in the aft direction. Discrepancies 

apparent at the aft-most angles for the unheated condition are most likely the result of insufficient 
downstream extent of the array; further discussion can be found elsewhere. It can be inferred that a 

sufficiently accurate prediction of the near-field pressure will provide comparable agreement with the far-

field data.  

 
Figure 22  Comparison of measured (symbols) and projected (solid) sound 

 pressure along far field array for B118, B120, and B122 at St=0.4.  

VI. Converting the PSE Code into the AEROFLO Format 

 
The PSE procedure, with the supporting codes, was developed by the Caltech team member, but the 

integrated prediction tool is being developed in AEROFLO at TTC. Since the computer languages used in 

the two environments are different, the need exists to convert the procedure at Caltech, which is based on 

Matlab, to those in AEROFLO, which are based on Fortran, C, C++, and VB. Figures 23 through 26 show 

the  comparison  of  the  selected  results  obtained  with the  original PSE code  developed  at  Caltech with  
the 

   

 
Figure 23  Growth rate, wavenumber, and kinetic energy 

 computed with Matlab in the original PSE code 
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Figure 24  Growth rate, wavenumber, and kinetic energy 

 computed with AEROFLO in the converted PSE code 

 

 
Figure 25  Density perturbation with and without amplitude function in the original PSE code 
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Figure 26  Density perturbation with and without amplitude function 

 in computed with AEROFLO in the converted PSE code 

 

AEROFLO version of the same PSE code. Agreement is evident, indicating that the PSE approach has been 

successfully integrated into AEROFLO. 

VII. Converting the Wave-packet Code into the AEROFLO Format 

 

The wave-packet procedure, with the supporting codes, was developed by the UTRC team member, but the 

integrated prediction tool is being developed in AEROFLO at TTC. Since the computer languages used in 

the two environments are different, the need exists to convert the procedure at UTRC, which is based on 

Matlab, to those in AEROFLO, which are based on Fortran, C, C++, and VB. The original and converted 

programs were used to project an analytic source function: 

rD

irDe
rp ),(  , 

whose expected far field result is 

Dr

Drie
rp





 ),(  . 

A comparison of the original and converted codes, the surfaces, original acoustic signal, analytic projected 
value, and wave-packet calculations compared to the expected results are presented in Figures 27 through 

29.  

(26) 

(27) 
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Figure 27 Comparison of the surfaces of the projection code 

 (a) in AEROFLO, (b) original Matlab code at UTRC. 
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Figure 28 Comparison of the source signal projected 

 (a) in AEROFLO, (b) original Matlab code at UTRC 
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Figure 29 Comparison of the pressure signals projected 

 (a) in AEROFLO, (b) original Matlab code at UTRC 
 

The agreement between the procedure in the integrated tool (AEROFLO) and in the original procedure 

at UTRC is evident. We also considered a second problem, with the analytical, near-field source of 
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where St = 0.4, xs = 5, and L = 2.0. 

 
The comparison is shown in Figures 30 through 32. Again, agreement is evident, indicating that the 

wave-packet procedure has been successfully implemented in the integrated tool. 
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Figure 30 Comparison of the surfaces of the projection code 

 (a) in AEROFLO, (b) original Matlab code at UTRC. 
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Figure 31 Comparison of the source signal projected 

 (a) in AEROFLO, (b) original Matlab code at UTRC. 
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Figure 32 Comparison of the pressure signals projected 

 (a) in AEROFLO, (b) original Matlab code at UTRC 
 

VIII. Concluding remarks 

 
This paper presents the progress in an on-going research program between three organizations to develop 

and demonstrate innovative, highly-efficient computational methodologies for simultaneous nozzle 

acoustic and aerodynamic design applicable to subsonic and supersonic jet exhaust noise reduction in 

tactical aircraft. The approach comprises of three major elements: (1) Reynolds-averaged Navier-Stokes 

(RANS)-CFD for computing the jet turbulent mean flow, (2) pressure wave packet-based methods for 

predicting near-field sound generation from the largest scales, based on the Linear Parabolized Stability 

Equations (LPSE) and the aforementioned RANS solutions, and (3) a method based on the solution of the 
linear wave equation for determining the acoustic radiation field from the LPSE solution. The individual 

component of the methodology is presented in terms of its accuracy and robustness. The integration and 

relationship between the components is discussed and the solutions of the respective sets of model 

equations have been translated into a common metric for a seamless integration. An end-to-end application 

of the methodology has almost been completed and will soon be presented after a rigorous validation 

exercise currently underway. 
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APPENDIX A 

 

Details of the PSE Component of the Integrated Tool 

 

For simplicity, initially considering a 2D jet, we decompose variables as   uyxUu  ,' , 

  vyxVv  ,' ,  1'  and pp  /1' , where for simplicity we assume the base flow has no 

temperature gradients (cold flow). After substitution into the Euler equations, we find 
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where i=1,2. Let  Tpvuq ,,,  , and decompose this according to PSE: 
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where q̂  represents the „slowly-varying‟ part of the solution, while 
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captures streamwise growth and wave behavior. Substituting this into the system above, we obtain 
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q
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F
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where L  and F  are linear, and non-linear operators, respectively. Let us ignore the non-linear terms for 

now (set 0nF ). nL  is 

 

 

This is most often split up into two separate operators, xML L , where L  contains no streamwise 

derivatives. Given  yxqq i

i ,ˆˆ  , 
1ˆ iq  is obtained via 

 

  iiiii qMqMxL ˆˆ 1111    

 

where first-order implicit differences have been used for the streamwise derivative. Note that 
1iL  depends 

on 
1i , an unknown. Thus, an extra condition must be imposed update   between ix  and 1ix . This 

condition determines the split in downstream evolution between  yxq ,ˆ , and  xA . 

 

In linear stability analysis (LST), the logarithmic, streamwise derivative of q  is 

 

   xqi log , 

 

while the corresponding PSE quantity is  

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

 
 

 
.

























ynxnynx

yyynxnx

nxyxynxn

ViUii

VViUiV

iUUViUi







NL  

(A.8) 

(A.9) 

(A.7) 



 31 

 

 
q

q
iqi x

x
ˆ

ˆ
log   . 

 

Having similar definitions of γ between LST and PSE is of value. This, of course, cannot be accomplished 

directly, correspondence being obtained in an integral sense: multiply by qq ˆ*ˆ  and integrate over the 

cross-stream coordinate (and divide by integral of same quantity):  
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If we can now choose   such that 0ˆ*ˆ  dyqq x , then, side by side, the two definitions are 
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For jets in cylindrical coordinates, we set xuu  , ruv  , and uw  . We decompose variables 

as   ', urxUu  ,   ', vrxVv  , 'ww  ,   ',   rx , and '/1 pp   . Substituting 

this decomposition into the inviscid Euler equations in cylindrical coordinates results in 
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Represent this more compactly as 

 qq fL , 

 

where  Tpwvuq ,,,,  . L is a linear operator, which reduces to the LST operator upon setting 

0 xxUV  . 

In the cylindrical case, the PSE assumption is  
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where  mn  is the initial level of mode mn. Substituting this into the above equations results in  
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APPENDIX B 

 

Details of the Wave Packet Component of the Integrated Tool 
 
B.0 The Wave Packet Projection Method 

 

The governing equation can be written as: 
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where  = kc is the acoustic wavelength. 
 

The first equation is the Helmholtz equation, which lends itself to analytic solutions in form of Green‟s 

functions 
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where 
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Following the formulation in Reba et al. (2008), near-field acoustic data assumed known on a conical 

surface is projected in space by solving the above linear wave equation. The boundary condition G = 0 is 

imposed on the conical surface, and the equation is solved in a spherical coordinate system centered on the 

virtual origin of the cone surface. The polar angle  is oriented such that  =  corresponds to the jet axis 

and the cone surface is defined as  =  0. Utilizing a Fourier transform in the azimuthal direction,  
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Eq. 5 in spherical coordinates becomes: 
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On expanding the left hand operator, this becomes: 
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Introducing the spherical Hankel transform in the radial direction, 
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Representing the Green‟s function based on the Legendre functions )(cos
mP  associated with the 

eigenvalues  determined by enforcing the boundary condition )(cos
mP = 0,  

)(cos),(  
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The coefficients of the basis expansion in Eqn. 12 can be determined by applying the transform 
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to Eqn. 11 to obtain 
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where  
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Applying the inverse Hankel transform 
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Using Eqn. (6), the acoustic field due to a pressure distribution on the near field can be written as 
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where  is the array spreading angle or cone half angle. 

 

 

 


